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PREFACE

This report describes part of a comprehensive and continuing program of re-
search concerned with advancing the state-of-the-art in remote sensing of the
environment from aircraft and sateilites. The research is being carried out for
NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the Environmental
Research Institute of Michigan (ERIM), formerly the Willow Run Laboratories of
The University of Michigan. The basic objective of this multidisciplinary program
is to develop remote sensing as a practical tool to provide the planner and decision-

maker with extensive information quickly and economically.

Timely information obtained by remote sensing can be important to such people
as the farmer, the city planner, the conservationist, and others concerned with prob-
lems such as crop yield and disease, urban land studies and development, water
pollution, and forest management. The scope of cur program includes (1) extending
the understanding of basic processes; (2) discovering new applications, developing
advanced remote-sensing systems, and improving automatic data processing to ex-
tract information in a useful form; and (3) assisting in data collection, processing,

analysis, and ground-truth verification.

The research described herein was performed under NASA Coniract NAS 9-
9784, Task VII and covers the period from February 1, 1973 through October 31,
1973. Dr. Andrew Potter has been Technical Monitor. The program was directed
by R. R. Legault, Vice-President of ERIM, J. D. Erickson, Principal Investigator
and Head of the Infformation Systems and Analysis Department,and R. F. Nalepka,
Head of the Multispectral Analysis Section. The ERIM number for this report is
190100-32-T

The results reported in Appendix B were derived by H. M. Horwitz.
R. B. Crane and R. J. Kauth made helpful comments. The study was carried out
under the direction of R. R, Legault, J. D. Erickson, and R. F. Nalepka. The
author gratefully acknowledges the help of all these co-workers.
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SUMMIARY
Nine-element rules decide what material to assign to a pixel on the basis of data from that
pixel and from its eight immediate neighbors. They are applicable whenever a pixel is likely
to represent the same material as its neighbors. The purpose of such rules is to gain recogni-
tion accuracy at only a slight extra cost in processing time. The consideration of neighboring
data values adds some spatial information to what otherwise would be a purely multispectral

decision process. Three such ruleg were implemented and tested:

The Nine-Point Likelihood Rule is the maximum likelihood decision rule derived from the

assumption that the nine elements are an independent random sample from a multivariate nor-
mal distribution. It amounts to adding, for each material, the nine multivariate normal expon-
ents and then choosing the material with the smallest sum. To prevent occasional alien lp.oints
from disturbing the decision rule, we have modified it to sum only the m smallest exponents,

wherem =1, ..., 9.

The Voting Rule is applied after one-point decisions have been made on the nine pixels, It

assigns to the center pixel the material most frequently recognized among the nine pixels. In

case of a tie, the one-point decision on the center pixel is used.

The Moving Average Rule averages the nine data points and then applies the one-point rule,

To lessen its sensitivity to alien points we have deleted the t largest and t smallest values of the

nine in each channel, where t =0, .. ., 4.

To compare and rank these three rules and the one-point rule, we ran a quantitative test
by counting the number of points misclassified within each of 42 field interiors in the Imperial
Valley, California. A result of the test was the following best-to-worst ranking of rule per-
formance: nine-point likelihood rule with m = 9; voting rule; moving average rule with t £ 0;
moving average rule with t = 0; one-point rule; and nine-point likelihood rule with m = 1.
Performance of the nine-point likelihood rule improved steadily as m went from 1 to 9. For
m =9, its error rate was about one-half that of the one-point rule on the training sets, and on

the test sets about three-fourths that of the one-point rule.

To supplement the results obtained on field interiors, we also made qualitative compari-
sons of maps generated by the different rules. To do this, we implemented an option to allow
each rule to decide against all the alternative materials and display such decisions by leaving
blanks on the map. Such null decisions create a white framework of roads, rivers, and other
extraneous materials against which materials of interest stand out, thereby helping to produce

a readable map.
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The m=9 rule with the null test splotched the map with white rectangles; this was because
a single unusual point produces higher than normal exponent sums for a 3 x 3 pixel rectangle
around it. The rectangles disappeared for m = 7. Fine detail such as small roads seem to be
lost by the nine-point rules. The null test for the voting rule {decide null if the winning vote
total is too small) worked well in locating narrow boundaries distant from the material signa-

tures but consistent with each other.

For some fields, the nine-point rules brought out an underlying pattern not readily apparent
in a mixture of individual recognitions. For others, the nine-point ruleg seemed to find order

where there was none. In either case, the contradictory character of the data \'r.ré,s suppressed.

The null test can he used as a boundary detector by displaying each null point as a dark
symbol and leaving everything else blank. Neither the m=7 rule nor the voting rule succeeded
well as a boundary detector. The m=7 rule lost many small boundaries, and the voting rule

lost the big extraneous areas.

Qur experiment comparing the nine-point rules and the one-point rule is based on but one
data get; thus the conclusions from it are tentative, and the ultimate impact and utility of the
nine-point approach have yet to be established. Because the nine-point rules performed suc-
cessfully inthe experiment, this sugpests that they should be quantitatively and qualitatively test-
ed on other data sets and encourages the implementation and comparison of other promising
nine-point rules. There remains a need for development of a better boundary detector, one com-

bining the principle of distance from known signatures with the principle of divided allegiance.
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2
INTRODUCTION
The rules currently in use for multispectral recognition are single-element oriented-—that
is,they make a decision on each individual pixel without being influenced by decisions made on
neighboring pixels. Bul for the many applications in which a pixel is likely to represent the
same material as its immediate neighbors, a rule that takes feighboring data into account

would be expected to perform better than a single-element rule.

Nine-element .rules are designed to gain this advantage while preserving simplicity and
speed. Such rules are applied in turn to each pixel of the scene in the context of its eight imme-

diate neighbors arranged in a 3 % 3 grid:

The rules assume that most or all of these nine pixels represent the same material, and they
assign to the center pixel this majority material. Modest storage requirements and the small

number of pixels playing a part in each decision make these rules practical.

Nine-element rules are most effective when the assumption of similarity of neighbors is
most realistic. For this reason, one would expect nine-element rules to be more reliable than
a single-element rule on the interiors of homogeneous areas and less precise on the boundaries.
Nine-element rules would be applicable to data on agricultural fields collected at aircraft alti-
tudes or in surveys of lakes and rivers; they would not be applicable, however, when the mate-
rials are "salted and peppered” across the scene, as in some geological data. When it islikely
that neighboring pixels represent different materials, then it is also likely that many pixels rep-

resent more than one material. In this case, a mixture rule would be appropriate [1].

Although 25- and 49-element rules should not be ignored, we find them less attractive than
nine-element rules because (1) they require storing five or seven scan lines at a time, thus

taxing the fast-access storage of many computers; (2) each tier of pixels added to the group

9
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makes the rule just that much more unclear as to field boundaries; (3) the increased number of
pixels used slows down the rule; and (4) though an increase in accuracy can be expected in pro-
ceeding from one pixel to nine, a leveling off of accuracy occurs in going from 9 to 25 and from
25 to 49,

Another way of using data from neighboring pixels would be to define boundaries by a bound-
ary-detection rule and then for each area enclosed to make a single decision applying to all
pixels in the area [2}. (A generalization of one of the three decision rules defined in Sections
3.1 through 3.3 could be used.) This approach has certain difficulties: (1) human touch-up
would be needed to fill gaps in the boundaries; {2) some data sets would not cqrﬁorm to the
pattern of homogeneous areas surrounded by boundaries {as, for example, when water depth is
mapped by multispectral recognition); and (3} if the shapes of homogeneous areas aré more
complicated than quadrilaterals, both a disk-storage system and a time-consuming algorithm

wonuld ha n
wouliQ 0C |

a sinple field,

10
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THE NINE —POINTSRULES DEFINED

3.1 NINE-PQINT LIKELIHOOD RULE

The nine-point likelihood rule is a maximum likelihnod decision rule _baéed on an inde-
pendent random sample of size nine from a normal distribution, rather than on a sample of
gize one from such a distribution. Increasing the sample size from one to nine will usually
increase to a marked degree the accuracy of a statistical estimation procedure For example,
the aceuracy of the sample mean as an estimate of the population mean is measured by the
standard deviation of the sample mean. This quantity is a constant divided by the square root
of the number of observations. Thus, the mean of a sample of nine ohservations would have

one-third the standard deviation of a single ohservation.

Nine-point likelihood is simple to compute. It can be defined in terms of the one -point

normal likelihood,

-1/2[(3( - TR Mk - 1) +log, |RfJ
congtant e ’
where x is the data point

i is the mean

R is the covariance matrix of the distribution of the material under consideration

When the one~point rule is applied, only the quantity in the square brackets (hereinafter
called the “exponent') is computed. The material producing the smallest exponent is the
maximutn likelihood choice. The nine point likelihood, under the assumption of independence,
is the product of the one-point likelihoods of the nine pixels. Hence, the nine-point maximum
likelihood decision criterion is the sum of the nine exponents. The material with the smallest

sum is the material chosen.

Computing each exponent is the most time -consuming task of the one -poirt decision rule.
The nine-point likelihood rule, hy comparison, does only the additional work of storing, re-
trieving, and summing the nine exponents., It can be efficiently applied by storing two unpacked
scanlines of exponents and one packed scanline of data (see Appendix A). In short, from the

standpoint of speed of execution and required storage, this rule .is practical to apply.

Although it is unrealistic to assume that the nine points.are independent, the rule derived
from such an assumption may still be good. An analogous example is the one-point rule based
on the normal distribution which worked well even on non-normal data [3]. The simplicity
and practicality of the nine-point likelihood rule make it worth experimental trial, even if the

fuli benefit one would expect to be derived from a valid model is not realized.

11
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To guard against the possibility that not all the nine pixels represent the same distribu-
tion, the best-m-of -nine likelihood rule is also being studied. In this rule, we compute all
nine exponents but sum only the m smallest. If one of the nine pixels includes roadways, a
pile of rocks, or a patch of weeds, or if the data point has been garbled by the sensor, re-
corder, or digitizer, then the best-m-of -nine modification prevents such an abnormal point

from smearing its own and neighboring recognitions.

This rule takes somewhat longer than the unmodified rule,because it requires sorting
the nine exponents. Special cases, such as m = 8, could be programmed to run faster because

one need only find the largest exponent and subtract it from the sum.

3.2 MOVING-AVERAGE RULE
obtain an aver=-

0
rule. This rule

p5d

ce data po
is a common technique for reducing noise in the data. It and the nine-point likelihood rule
are equally easy to apply. To give the moving-average rule the flexibility (similar to that of
the best-m-of -nine likelihood rule) to reject odd points, we consider a trimmed mean rule.
In every channel, the nine data values are ordered, the t largest and t smallest values are
deleted, and the remaining values are averaged, When t = 0, the rule is an untrimmed
moving-average rule; when t = 4, the median of the nine values in each channel is taken as

the average data point.

Appendix B shows that the nine-point likelihood criterion can be expressed in the form

9
log, IRl +(X - TR YK - p) + % Z:(xi - E)TR'I(Xi -X)
i=1

where Xi is the 1-th of the 9 data points

X is the mean of the nine points
it is the mean of the material in question

R is its covariance matrix

If every material had the same covariance matrix, the last term would be the same for all
materials and could be omitted. The first two terms comprise the moving-average criterion.
Thus, if all materials have the same covariance matrix, the moving-average rule and the
nine -point likelihood rule are identical in effect.

When the covariance matrices are unequal, however, the third term provides information
about how closely the distribution within the nine pixels corresponds to the material covari-

ance matrix, thereby helping in the recognition process.

12
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Appendix C demonstrates that when the aésumption of independénce of the nine pixels is
replaced by a simple correlation model, the maximum likelihood decision rule turns out to be
a linear combination of the moving-average criterion and the nine -point likelihood criterion.
The higher the correlation, the more weight is given the moving-average criterion and the

less to the nine-point likelihood criterion.

3.3 VOTING RULE

The voting rule we studied is applied after one -point recognitions have been made on the
nine pixels. The center pixel is assigned the material recognized most frequently among the
nine. In case of tie, the one-point recognition on the center pixel is chosen. fts eage of ap~
plication is about the same as that of the previously defined rules. Rules similar to the voting
rule have been used to enhance space photographs and have been suggested for multispectral

recognition.

3.4 NULL DECISIONS AND BOUNDARY DETECTORS

Recognition maps are made more readable if the category "none of these' is made part
of the decision rule and printed as a blank. In one-element tules, the null decision is made
when a point lies outside an equal-density ellipsoid of the winning sighature, the size of
which is so chosen that a point from the distribution has a prescribed probability {such as

0.001) of falling outside it. This test amounts to checking whether the quadratic form

X - ) TR - )

is greater than a constant C corresponding to the preseribed level, (X - u)TR'l(X -uw)is
the multivariate normal exponent without the loge|RE term. It has the chi-square distribu-
tion. C is the entry in the table of the chi-square distribution whose row number is the mum-~ -

ber of channels used and whose column heading is the significance level.

Although a predetermined level such as 0.001 is good for a start, the most readable map
is usually obtained by trying several values of C and empirically obtaining the best value. To
facilitate this search, we have separated the null test from the decigion rule by writing a two-
channel output tape; the first channel is the number of the winning signature and the second
the value of the guadratic form, C becomes an input to the mapping program and several

values may be tried efficiently.

For the best-m-of -nine likelihood rule, the nuil criterion is the sum of the m smallest
exponents minus m logelRl . Under the assumption of independence, this criterion has the
chi-square distribution with degreés of freedom equal to m times the number of chanmnels.

This criterion is written in the second channel of the output tape and a null decision is made

13
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at the time of mapping. As with the one-point rule, a point failing the null test is on the out-
side of an equal-density ellipsoid chesen to reject legitimate points with a prescribed low

level of probability.

For the voting rule, a null decision can be made whenever the winning vote total {alls
below a prescribed integer —a lack of consensus among the votes indicates a loss of con-
fidence in the identification. The moving-average rule, which is a one-point rule applied to

an average of the nine pixels, has the same null test as the one-point rule.

If the points failing the mll test are mapped with a dark symbol and everything else leit
blank, the null test then becomes a boundary detector. The interiors of homogéneous areas
corresponding to one of the given signatures would be left blank, outlined by pixels whose
neighbors represent either more than one signature or some alien material whose signature

was not provided.

The voting rule criterion would seem an appropriate boundary detector because a low
winning vote total would indicate a divided allegiance in the neighborhood. We would expect
the best-m-of-nine criterion to be a better boundary detector for high values of m than for
low values. If m were 7, for example, then three or more atypical pixels would significantly
increase the boundary criterion; but if m were =5, then a majority of the pixels would have to
be atypical to produce such an increase. If a narrow boundary between homogeneous areas
went through the middle of the 3 X 3 grid, we would expect three or four pixels, but not a
majority, to be atypical. Thus, the boundary would be detected by the m="7 criterion but not

by a mz5 criterion,

3.5 OTHER MULTI-ELEMENT RULES

Other promising multi-element processing rules can be defined, although we have not
implemented and tested them. The three previously defined rules need not be restricted to a
3 » 3 grid; they can be applied equally well to a5 X5 or a 7 X 7 grid or to an entire field.
Meore complicated voting rules can be defined in which second choices are considered. The
moving-average rule can be run with weights, the center element getting the most weight and
the diagonal elements the least, A linear combination of the nine-point likelihood and moving -
average decision criteria (shown in Appendix C to be equivalent to a nine-point likelihood rule

based on a simple correlation model} could be implemented.

It has been suggested* that the nine-point decision problem be treated as though it were
a one-point decision problem with nine times as many channels, and that the fast but powerful

linear decision rule [4]be employed. One would expect the nine-times-as-many -channels

*In personal communication with R. J. Kauth and R. B. Crane of ERIM
14
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It might also be sensitive to the direction of flight over the training area. In agricultural

applications, for example, it might be sensitive to the direction of the rows.

Because we have observed that between-field variation of a crop is different from varia-
tion observed within each field, a rule based on a between-field covariance matrix B and a
within-field covariance matrix R would merit further study. One way to do this would be to
use the nine-point likelihood rule in the form derived in Appendix B —that is, to choose the

material j for which the expression
constant, + (X - 1 )TR_I(}T AR L : (X - }T)TR_l(X -X)
j i " 92 i i
i=1

is smallest, except that Bj_1 replaces Rj_l in the second term.

- 15
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EXPERIMENTAL COMPARIS40N OF NINE-POINT RULES

We have implemented the best-m-of-nine likelihood rule, the trimmed moving-average
rule, and the voting rule by digital processing modules (described in Appendix A). To com-
pare the effectiveness of each of these rules with the others and with the conventional one-
point {guadratic) rule, we tried them on multispectiral data collected from California's
Imperial Valley (at 5000 ft in 1968). We chose these data for the experiment because we had
confidence in the ground truth [5] and because some of the signatures were similar enough to
make accurate recognition difficult, thereby offering us an opportunity to demonstrate differ-
ences in rule performance. The experiment was restricted to the 42 fields for which the
ground truth was unequivocal and for which the scan angle was minimal. A previous study of
the relative effectiveness of the quadratic and linear decision rules [4] has shown the error

rate on thege fields to be a sensitive measure of the power of the decision rule used.

Performance for each field was measured by the field error rate —that is, the number
of elements misclassified divided by the number of elements in the field. So that the error
rates would be comparable, we did not incorporate the null decision option in the rules. The
crop error rates and the overall error rates were obtained by averaging the field error rates.
The total rates were not computed by dividing the total number of misclassifications by the
total number of points becanse that would have given too much weight to the results from the
large fields., The overall error rate is estimated with two sources of error: the between-
field variation and the within-field variation. Because we have found that the between-field
variation overshadows the other and because the effect of between-field variation is minimized

by an estimate giving each field equal weight, we have chosen that estimate.

The limits of the fields studied were defined as being several rows in from the apparent
boundaries; this precaution excluded pixels on or near the boundaries which may have repre-
sented materials at variance with the ground truth., Thus, the experiment measured the per-
formance of the rules on the interiors of fields and not at the boundaries. Because one ex-
pects the advantage of nine-point rules in the interiors to be offset somewhat by poorer per-
formance on the boundaries, this was an unfortunate limitation but necessary since one cannot
be sure of the ground truth of boundary pixels. Thus, the experimental results give an incom-
plete picture of rule performance unless they are interpreted side by side with gqualitative re-

sults from the unabridged (i.e., field interiors plus boundaries) scene.

For each rule two computer runs were made, each with 20 training and 22 test fields, but
with the training sets of the second run chosen from the test fields of the first. Later in this

section, we report the results separately for training and test fields.

18
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The rules tested were the one -point (quadratic) rule, the best-m-of -nine likelihood rule
(1 =m = 9), the trimmed mean rule (with the number of values trimmed off each end varying
from 0 to 4), and the voting rule. The nine-point rule with m = 1 ig not equivalent to the one-
peint rule because under the m=1 rule, when the center element is closest to material A
and one of the eight neighbors is cloger still to material B, material B is chosen. The m=9
rule is the original nine-point likelihood rule, the trim=0 rule is the usual moving-average
rule, and the trim=4 rule is a4 moving~median rule. The one ~point rule was applied to all
pixels of the field except those on the edge; this permitted better comparison with the nine-

point rules that were unable to classify edge pixels.

The results of the experiment are given in Tables 1 through 4 and Figs. 1-2. The figures
illustrate the "totalg” column of the tables. This column is the most important one in gauging
the relative performance of the rules because the success of a rule with one crop may be
more than offset by failures with other crops. And, according to the Bayesian theory of de-

cisions, what counts is the minimization of total errors.

The four tables give the training field and test field results for the first and second choice
of training fields. Looking first at the "totals™ column of these tables, we see in all four cases
a steady reduction in the percent misclassified by the best-m -of -nine likelihood rule as m
goes from 1 to 9. The one-point rule is better than the m=1 rule in three cases and just as
good in the fourth. The m=9 rule, however, has one-half the error rate of the one -point rule
on the training sets and three-fourths the one-point rate on the test sets. In all four cases,
the m=9 rule had lower rates than the voting rule or the trimmed mean rules. The voting
rule and the trimmed mean rules performed substantially better than the one-point rule. The
voting rule performed better thar; any trimmed mean rule in three cases and was about the
same as the trimmed mean rules in the fourth, The only trend in the trimmed mean resulis

is that the rule is uniformly a little worse when trim = 0 (untrimmed),

When we examine the columns of Tables 1-4 which show error rates for individual crops,
however, the results are contradictory. With one exception, alfalfa, barley, and rye had de-
creasing error rates as m went from 1 to 9. In various columns of these four tableg the de-
crease in percent misclassified is startling: 62 to 28 in one alfalfa column, 62 to 22 in a bar-
ley column, and 58 to 16 in a rye column. The three sugar beet columns and one lettuce col-
umn in which the numbers were large 'enough to discern a trend all had slightly increasging

rates.

Is there any tendency for an upturn of rates at mjn = 99 Looking at the 24 non-safflower
results, we find m = 9 worse than m = 8 in 13 cases, better in 9 cases, and the same in 2.

This is not a very significant trend and, in fact, disappears in the totalling.
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TABLE 1. PERCENT MISCLASSIFIED BY FOUR TYPES OF DECISION RULES
ON 20 IMPERIAL VALLEY TRAINING FIELDS USING THE FIRST SET OF
TRAINING FIELDS

Bare Sugar
Total  Alialfa  Barley Lettuce Rye Soil Beefs Salflower

One-Point Rule: 20.3 51.3 14.8 6.4 32.9 0.7 20.1 0

Best-m-of ~Nine
Likelihood Rule:

m-1 200 h1.4 13.7 1.0 57.7 N 7.2 0
m=2 17.6 49.0 8.7 0.9 50.5 0 5.8 0
m=3 16.1 47.5 6.2 0.4 45.2 0 5.5 0
m=4 14.9 46.3 4.6 0.3 39.2 0 5.3 0
m=5 14.1 45.5 3.1 0.1 35.1 0 3.1 0
m=8 13.3 43.7 3.2 0.2 30.7 0 5.4 0
o m="7 12.7 42.3 3.5 0.2 25.9 0.3 5.6 0
m=8 12.0 40.2 3.8 0.2 21.5 0.4 6.3 0
m=9 11.7 38.7 3.5 1.3 16.3 1.0 7.5 0
Trimmed Mean
Rule:
trim=0 15.5 47,7 5.7 0.2 26.7 1.1 12.9 0
trim=1 14.1 46.1 4.4 0.1 25.2 0.3 0.8 0
trim=2 14.5 47.7 4,1 0.2 26.8 0 9.6 0
trim=3 13.7 46.4 3.8 0.2 26.3 ] 7.0 0
frim=4 14.1 46.1 4.3 0.4 28.4 0 7.5 0
Voting Rule: 13.56 46.5 3.6 0.6 22.0 0 8.1 0
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TABLE 2. PERCENT MISCLASSIFIED BY FOUR TYPES OF DECISION RULES
ON 22 IMPERIAL VALLEY TEST FIELDS USING THE FIRST SET OF TRAIN-

One-Point Rule:

Best-m -of -Nine
Likelihood Rule:

BEEEEZEES
LLLALLLLE

Trimmed Mean
Rule:
trim=0
trim=1
trim=2
trim=3
trim=4

Voting Rule:

ING FIELDS
Total Alfalia Barley Lettuce
31.8 64.3 21.4 0.8
34.1 69.5 22.7 0
31.6 68.7 16.8 0
30.0 65.8 15.1 0
28.6 £3.5 13.3 0
27.3 61.4 11.9 0
26.5 58.8 11.8 0
25.5 55.8 11.5 0
25.0 54.1 12.3 0
24.8 51.1 13.4 0.8
27.5 59.7 16.2 2.5
26.2 57.7 14.4 0
26.1 58.2 13.1 0
26.2 59,2 12.3 0
26.3 58.5 12.5 0
26.8 61.8 9.2 0
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TABLE 3. PERCENT MISCLASSIFIED BY FOQUR TYPES OF DECISION RULES
ON 20 IMPERIAL VALLEY TRAINING FIELDS USING THE SECOND SET OF
TRAINING FIELDS

Bare Sugar
Total  Alfalfa  Barley Lettuce Rye Soil Beets  Safflower

One -Point Rule: 21.8 46.1 43.1 1.3 18.4 0.4 12.5 0.2

Best-m-of -Nine
Likelihood Rule:

m=1 26.1 61.8 62.1 0 11.7 0 1.3 0
mi=2 24.2 80.3 55.6 0 9.2 0 0.6 0
m=3 21.9 55.3 458.6 0] 8.5 o 0.5 )
m=4 19.5 50.3 42,7 0 8.3 0 0.5 0
m=5 17.8 46.6 36.9 0 8.2 0 0.5 0
m=6 15.6 41.8 2.1 0 7.1 0 0.6 0
m="T 13.3 36.7 25.5 0 7.5 0 0.9 0
m=8 12.3 33.1 23.8 0 7.6 0.2 1.0 ]
m-9 11.4 28.2 21.9 0.6 7.5 0.8 2.6 0

Trimmed Mean

Rule:
trim=0 18.9 42.6 46.4 0 6.5 1.1 1.8 0
trim=1 17.6 39.5 48.0 0 5.3 0 0.1 0
trim=2 17.6 39.4 46.0 0 5.2 0 0.1 0
trim=3 17.6 39.5 45.5 0 5.4 0 0.2 0
trim=4 17.2 3.7 44 .7 0 6.6 0 0.4 0

Voting Rule: 14.2 31.9 35.0 0 7.5 0 0.7 0
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TABLE 4. PERCENT MISCLASSIFIED BY FOUR TYPES OF DECISION RULES
ON 22 IMPERIAL VALLEY TEST FIELDS USING THE S8ECOND SET OF
TRAINING FIELDS

Bare Sugar
Total Alfalfa Barley Lettuce Rye Soil Beets  Safflower

One-Point Rule: 32.8 51.8 33.5 21.0 64.1 1.1 40,2 0

Best-m-of -Nine
Likelihgod Rule:

m=1 35.7 68.7 48.8 11.5 55.8 o 20.9 0
m=2 33.4 64.9 44.0 11.8 55.3 0 18.7 ¢
m=3 32.1 62,1 40.4 12.1 55.3 0 19.4 0
m=4 30.4 58.4 36.1 12.6 56.2 0 19.8 0
m=5 28.8 54.4 32.0 12.8 56.9 0 20.86 0
m=6 27.2 50.9 27.7 13.1 57.3 0 21.% 0
m="7 2h.6 47.8 22.2 13.8 57.6 0.3 23.1 0
m=3 24,1 44.9 18.0 13.5 57.7 0.4 23.6 0
m=9 23.5 43.2 15.3 13.8 57.8 0.9 25.9 0

Trimmed Mean

Rule: ' _
trim=0 29.9 50.4 36.9 12.7 54.7 3.4 24.2 0
trim=1 28.9 49.8 37.4 13.0 53.7 0.3 21.6 0
trim=2 28.6 49,5 36.9 12.6 53.7 0 21.3 0
trim=3 28.4 49.4 36.4 13.3 54.3 0 20.4 0
trim=4 28.3 48.9 35.3 14.1 55.6 0 21.2 ¢

Voting Rule: 26.7 48,2 27.6 14.4 55.9 o 26.4 0
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FIGURE 1. PERCENT MISCLASSIFIED BY FOUR TYPES OF DECISION RULES
ON IMPERIAL VALLEY FIELDS USING THE FIRST SET OF TRAINING FIELDS
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If we compare the one-point rule, the m=9 rule, the trim=1 rule, and the voting rule for
the 17 cases in which the numbers are substantial, we discover the following: the one-point
rule is the worst one in every case but one, the m=9 rule is best in 10 cases, the trim=-1 rule
best in 6 cases, and the voting rule best once. Comparing just the voting rule and the trim=1

rule, it's an 8-to-9 split.

The slight inferiority of the untrimmed to the trim=1 moving-average rule is consistent
in crop error rates. Of 23 non-zero cases, the untrimmed rule did best only twice and

equally well once.

Since total error rate is a reasonable measure of performance, we summarize the results
of the experiment as follows: For the interiors of the homogeneous areas tested, the order of

performance of the rules from best to worst is

(1) nine-point likelihood
(2) voting

(3) trimmed mean

(4) untrimmed mean

(5) one-point

(6) best-likelihood-of -nine

The error rate of the best rule is one-half that of the one-point rule on the training sets and

three -fourths that of the one-point rule on the test sets.
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- 5 .
QUALITATIVE COMPARISON OF NINE-POINT RULES
To supplement these quantitative results, we used the rules previously described to make
maps of a stretch of the Imperial Valley based on data containing many of the fields appearing
in the quantitative study. These maps, included as Figs. 3 through 8, show the resuits of using
the one-point rule, the nine-point likelihood rule with m = 9, m = 7, and m = 5, the moving

average rule with trim = 1, and the voting rule, respectively.

Implementing an option to allow each rule to decide against all alternative materials (see
Section 3.4), we allowed such mill decisions to be displayed in the form of blanks on the map,
Such decisions leave a white framework of roads, rivers, and other extraneous materials, against

which materials of interest show up,thereby helping produce a readable map.

The m=9 rule, the best one in the quantitative study, has an unfortunate tendency to splotch
the map with white rectangles (indicative of lower probability density), even when the null test
limit is set higher than normal. This is because a single unusual point produces higher than
normal exponent sums for a 3 X 3 rectangle surrounding it. The rectangles disappear, however,
when m = 7. The m=9 rule widens big roads and, as m drops from 9 to 5, the rules show an in-
creasing tendency to lose sight of small roads. The voting rule does a fairly good job of pick-

ing up small roads but tends to fill in wide ones.

For many fields, the one-point rule reports a "tossed salad" of recognitions, making it
difficult to perceive the basic pattern. The nine-point rules make it easier to perceive order
in the recognitions, but they have a tendency to find order where there is none. A field of sugar
beets and one of alfélfa, disguised on the one-point map by a scattering of false recognitions of
other crops, are accurately displayed on the nine-point maps. Another field in the one-point
map, appearing to be sugar beets but producing many contradictory recognitions, is smoothed
out by the nine-point maps to display nearly pure sugar beets. According to ground truth, how-
ever, it is a barley field. The doubtfulness of the one-point recognition comprised important in-
tormation that was lost by the nine-point maps. In addition, a patch of weeds, which on the one~
point map look like nothing but a shapeless mixture, is defined on the nine-point likelithood maps
as a rye field.

Figures 2 and 10 show the use of the m=7 rule and the voting rule, respectively, as.bound-
ary detectors. The results are not impressive. Of course, the data are not clear-cut; rather,
they were chosen to present a challenge to the decision rules. Even so, each rule exhibits a
deficiency., The m=7 rule loses boundaries other than large roads because its recognition of
a boundary point requires a larger than usual sum of distances from the chosen signature.

The voting rule reports false recognitions on large roads and other areas not associated with

one of the material signatures but consistent in signal with them. In such instances, whatever
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distant signature happens to be preferred is likely to pull a majority of votes. An example of
this tendency is a pastured field recognized by the voting rule as a field of lettuce.

A boundary detector that combines the principle of distance with that of divided allegiance
would probably work better than either of the methods presented.
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]
CONCLUSIONS AND RECOMMENDATIONS
6.1 CONCLUSIONS
The experiment comparing the nine-point rules and the one-point rule is based on one data
set. Therefore, the conclusions that follow are tentative. The ultimate impact and utility of the

nine-point approach has yet to be established.

The nine-point likelihood rule, modified to sum the best seven of nine exponents, shows
promisge as a recognition rule to increase accuracy. While the unmodified nine-point likelihood
rule performs best on field interiors, it is unsatisfactory when used with a null test to make a
recognition map because of its tendency to expand deviant pixels into 3 x 3 blank areas. On
field interiors, the moving-average rule and voling rules perform better than the one-point rule.
The moving-average rule does a little better, even on field interiors, when the largest and small-
est values in each channel are deleted from the sum. Preliminary gualitative results indicate
that the nine-point rules are less precise than the cne-point rule in recognizing fine structure
in a scene, which indicates that their most useful application is to scenes consisting mostly of
large, homogeneous areas. The voting rule and best-seven-of-nine rule are not very satisfac-

tory boundary detectors.

6.2 RECOMMENDATIONS

Because the nine-point rules studied performed successfully, they should be quantitatively
and qualitatively tested on other data sets for which good ground truth exists. This performance
also encourages the implementation and comparison of other nine-point rules, such as those
mentioned in Section 3.5. One of the more promising of these rules treats the nine-point decision
problem as a one-point decision problem with nine times as many channels, Another uses two
covariance matrices, one for between-field variation (which is used with the mean of the nine
pixels) and the other for within-field variation (used with the local variation among the nine
pixels). The development of a better boundary detector, combining the principle of distance

from known signatures with the principle of divided allegiance, is indicated.
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Appendix A
HOW THE NINE-POINT RULES ARE PROGRAMMED
The Tnstitute has a multispectral subsystem of the software system called ERIMS that
provides the following: moﬁnting, reading, and unpacking of data tapes; calling of modulesto
process the data; packing of output data values, four to a word; and writing of an output tape.

The subsystem consists of subroutines PROCESS and POINT. At the point-processing stage,
a module accepts an input data point called DATUM, consisting of NCHAN channel values.
The module modifies the DATUM vector in some way, storing the output vector in DATUM.
After all the prescribed modules have been called, POINT and PROCESS pack up DATUM, add-
ing it on to the output line that will be writien on tape, If several operationg are to be perform-
ed, they can be done as separate jobs (with the intermediate tape for one job providing the in-
put for the next) or they all can be run together (with each module picking up the output DATUM
vector from the previous module). The modules are alsc called—at an earlier stage when

initial calculations are made, and at a later stage for final calculations and printing of results.

The m-fold rule is carried out by two modules. The first, DENS (short for DENSITY), finds
in DATUM the chamel values of a multispectral data point and ealeulates, for each signature
read, the multivariate exponent of that data point; it then stores this result in DATUM. Thus,
DATUM has NCHAN values coming in and NSIG values going out, where NSIG is the number of

signatures.

The sééond moduie, LIKEB, picks up the nine relevant DATUM vectors by calling an as -
sembly-language subroutine SAVES that is used by all the nine-point ruies. SAVES stores two
unpacked lines of DATUM vectors in the auxiliary core memory of our IBM 7094 computer,
retrieves the DATUM vectors of the 3 X 3 grid, and stores them in an NSIG X 3 % 3 array DATY.
Only two lines need be stored because the third is the one being unpacked point by point. This
most current line replaces,‘ point by point, the least current one in auziliary memory. For
example, suppose you have just finished with point 30. One line in auxiliary memory consists
of the current line through point 30 and the least current line from point 31 to the end, The

other stored line is the second most current line,

LIKES works with the DATS array of nine DATUM vectors, each a vector of NSIG exponents,
For each channel ( i. e,, for each signature), LIKEY sorts the nine exponents and sums the m
smallest—m is an input to LIKES in the initialization stage, The number of the channel with
the smallest sum is put out'as DATUM(1} and the value of the gum; appropriately scaled, as
DATUM(2).

LIKE?Y does nothing but store data points for the first two lines or for the first two points
of each line, so that when it does become active, the DAT9 array contains nine meaningfui data
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points. After processing line number 3, it puts out a line number 2~—hecause the calculation
concerns the center point of the 3 % 3 grid, The point numbering is analogous. Thus, a line is

lost from top and bottom of each run, as well as a point from the beginning and end of each line.

Alone, LIKES produces a tape but no directly interpretable output. Used with a mapping
module (either as a single job or with an intermediate tape), however, it produces a recogni-
tion map. The mapping module can be set to print a blank whenever the second channel {the sum
of exponenis) gets too large; the result is that all pixels distant from any input signature are
left blank.

LIKES can alse be used with the module TALLY to count up recognitions within the rec-
tangle specified, print the count at the end of the run, and punch a card with the same informa-
tion. The cards can then be read by program DISPLAY to print out misclasgsification rates for
each field, for each crop, for all training sets, and for all test sets. Cne vector giving ground
truth and another identifying the training sets in the deck of field cards are needed as inputs
for DISPLAY.

The moving-average rule is carried out by two modules, AVE9 and QRULE. In the initia-
lization stage, AVES reads an integer TRIM that must be between { and 4. AVES reads the
original data tape, using subroutine SAVE9 to give it the nine relevant points in the array DAT9.
For each chamel I, AVE9 orders the nine values, deletes the TRIM largest and TRIM smallest,
gums the rest, divides by the number summed, and then puts that number into DATUM(I). The
effect of AVED is to replace each data point by an averaged data point.

QRULE is the one-point maximum likelihood decisionr rule. It reads each data point, com-
putes the exponent for each signature, then puts the number of the signature with the smallest
exponent in DATUM(1), and the value of that exponent in DATUM(2). QRULE can be followed
either by TALLY or a mapping module. Though usually used with original data, it can just as
easily accept the average data points put out by AVES,

The voting rule is carried out by the modules QRULE and VOTES. QRULE supplies the
recognition ( i.e., the winning signature number) in DATUM(1). VOTE$ uses subroutine SAVES
to store the nine relevant recognitions in the array DAT9. It goes through the nine, tallying
the number of recognitions of each signature. Then, the number of the signature with the most
recognitions is put into DATUM(1) and the winning vote total in DATUM(2). In case of tie, the
signature number of the center pixel is put into DATUM(1). VOTEY can be followed either by
TALLY or a mapping program.
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Appendix B
AN ALTERNATE FORM OF THE NINE-POINT LIKELIHOOD CRITERION

The nine -point likelihood criterion is

Zg[(X.l - u)TR-l(Xi - )+ 1oge tR|]
i=1 '

where vector Xi is point number i of the nine points

4 is the mean vector of the material being considered

R is the covariance matrix of this material
The material minimizing this eriterion is the one chosen,

Dividing by 9 and adding and subtracting the mean X of the nine points, the criterion
becomes

. 9 .
log,, IR +€1)_Z(Xi -X+X -u)TR_l(Xi -X+X -p) = log, IR]

i=1
<& =T, -1 = <he Tl
+§Z(xi-x) R (xi-x)+2(x—u) R “(X -yu)
i-1 i=1
9 T -1
+zZ(xi—x> R(X -pn)
i-1

X, 4, and R stay constant fori=1, ..., 9. The last term,
9
2150, - T |R X - ) = 0
i=1

because the sum of deviations from the mean is 0. So the criterion is
- T_-1,& 1 =T -1 =
log, IRl + X - ) R™(X “u) gl - R RTX, - %)

which is the moving-average criterion plus a term meaguring how closely the variation among

the nine points is in accordance with the material cavariance matrix,
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Appendix C

A NINE-POINT LIKELIHOOD MODEL WITH CORRELATION

We will derive a nine-point likelihood criterion based on a simple correlation model.

Let n be the number of channels. We consider the nine points X

, « » e, X, to be a single
1 9

point ¥* with nine times as many channels:

X* =X X, L, X

TR

in® 7217 7 "

,in,.. X e, X

I N 9n

We agsume that its covariance matrix is of the form

R pR pR. . pR
pR R pR. . pR
R* =] pR pR R . pR
PR pR pR. . R

—

—~

i

R* is a 9 X 9 matrix of n ¥ n matrices. In other words, this simple model assumes that the

correlation between any two points in the 3 X 3 grid is p. To {ind the covariance of channel j

of one point and channel k of another, multiply the single-point covariance Rjk by p.

The one-point maximum likelihood criterion applied to the super point X¥ is

log, |R*| + (X* - u*)TR*

-1

(X* - p*)

Written out in detail without the log, R* term, it is

i=1

9

9
Z:(X.1 - u)TR'l(Xi - ) +p) X, - u»)TR'l(Xj - 1)

i7]

9
-0y X, - W R, -0 1 - p)ZI:(Xi -wTRNE, - )
1—

g
i=1 j=1

9 T. -1 9
= X - R X, - +,.,.
.OE 1( g - s El( i )
1= ]:

]
T -1,
=9 (Xi—u)Rl(X-u)Jr..

i=1

? T | -1
=9pZ(xi—u) R X -u)+...
i=1

= 81p(X - u)TR-l()_f ST R
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So, the criterion is
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= T.-1= 9 T,-1
log, IR*| + 81p(X - )" RT(X - ¢} + (1 ‘P)Z‘Xi -#)TRTHX, - u)
i=1

which is a linear combination of the moving-average criterion and the nine -point likelihood
criterion.

This can be put into another form by using the results derived in Appendix B. The last
term hecomes

9
A =& - RE -0 (1 -0y i, - DR R - D)
' i=1

Thus, the criterion is

. N S 9 STl =
log, IR*| + (9 + 720)(X - ) R (X -p) + (1 —p}Z(Xi -XDRTX, -X)
i-1
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